Hybrid superconductor-semiconductor materials are fueling research in mesoscopic physics and quantum technology. Recently demonstrated smooth β-Sn superconductor shells, due to the increased induced gap, are expanding the available parameter space to new regimes. Fabricated on quasiballistic InSb nanowires, with careful control over the hybrid interface, Sn shells yield measurable switching currents even when nanowire resistance is of order 10kohm. In this regime Cooper pairs travel through a purely 1D quantum wire for at least part of their trajectory. Here, we focus on the evolution of proximity-induced supercurrent in magnetic field parallel to the nanowire. Long decay up to fields of 1T is observed. At the same time, the decay for higher occupied subbands is notably faster in some devices but not in others. We analyze this using a tight-binding numerical model that includes the Zeeman, orbital and spin-orbit effects. When the first subband is spin polarized, we observe a dramatic suppression of supercurrent, which is also confirmed by the model and suggests an absence of significant triplet supercurrent generation.